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Abstract We calculate information theoretic spreading measures of orthogonal func-
tions associated with solutions of quantum mechanical isospectral potentials. In partic-
ular, Shannon, Renyi and Fisher lengths have been evaluated for potentials isospectral
to the linear harmonic oscillator and the symmetric Rosen-Morse potentials. We have
also compared the behaviour of different lengths for the orthogonal functions and the
associated orthogonal polynomials.

1 Introduction

In recent years there have been growing interest in studying families of non trivial
potentials which are isospectral partners [1,2] of well known solvable potentials like
the harmonic oscillator [3,4]. Similar ideas have also been examined in the context
of supersymmetric quantum mechanics (SUSYQM) [5–10]. It is interesting to note
that while the solutions for most standard solvable quantum mechanical potentials are
given in terms of classical orthogonal polynomials, the solutions of the correspond-
ing isospectral partners (depending on one or more parameters) are generally given
in terms of orthogonal functions asbuilt up from classical orthogonal polynomials
[11–13].

In this context it may be noted that various information theoretic measures of uncer-
tainty have been studied in great detail for the classical orthogonal polynomials which
furnish solutions of such well known problems like the Harmonic oscillator, Coulomb
potential, Morse potential, Pöschl-Teller potential etc [14]. Although isospectral defor-
mation of the above mentioned potentials have been studied by a number of authors in
the context of Darboux theroem or supersymmetric quantum mechanics, barring a few
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Table 1 Fisher lengths, Renyi
lengths and Shannon lengths of
the state ̂ψ−

n (x, μ, λ) in Eq. (24)
for μ = 1 and λ = 1

n (̂δxH )
−
n (λ, μ) ̂LR

Hn(λ, μ)
̂NH [ρn ](λ, μ)

0 0.692098 3.51462 2.88259

1 0.413237 4.49039 3.79337

2 0.315388 5.21221 4.48006

Table 2 Fisher lengths, Renyi
lengths and Shannon lengths of
the state ̂ψ−

n (x,γ, λ) in Eq. (31)
for γ = 4 and λ = 1

n (̂δxR)
−
n (λ,γ) ̂LR

Rn(λ,γ)
̂NR [ρn ](λ,γ)

0 2.70648 1.93334 1.53992

1 4.09497 2.86675 2.38479

2 4.62147 4.30161 3.46009

exceptions [15] they have not been examined much from the point of view of informa-
tion theoretic uncertainty. Here our objective is to compute the spreading measures for
the orthogonal functions which form solutions of isospectrally deformed potentials
and compare them with the same quantities for the associated classical orthogonal
polynomials.

It may be noted that the most familiar spreading measure is the root mean-square
or standard deviation

�x =
√

(〈x2〉 − 〈x〉2) (1)

where the expectation value of a function f (x) is defined by

〈 f (x)〉 =
∫

f (x)ρn(x)dx (2)

whereρn(x) is a probability distribution function. However this measure is not always a
particularly suitable measure of spreading and consequently we shall consider various
other information theoretic measures of spreading like the Shannon, Renyi and Fisher
lengths (Tables 1, 2).

Let us note that the Fisher information, the Renyi entropy of order q and the Shannon
entropy are given respectively by [16–18]

F[ρn] =
〈

[

d

dx
ln ρn(x)

]2
〉

=
∞

∫

−∞

1

ρn(x)

(

d

dx
ρn(x)

)2

dx (3)

Rq [ρn] = 1

1 − q
ln〈[ρn(x)]q−1〉 (4)

S[ρn] = −
∞

∫

−∞
ρn(x) ln ρn(x)dx (5)
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Since the Fisher, Renyi and Shannon entropies corresponding to a given density
ρn(x) have particular units, which are different from that of the variable x , it is much
more useful to use the related information-theoretic lengths associated with these
measures. Thus we consider the Fisher, Renyi and Shannon length defined respectively
by [19,20]

(δx)n = 1√
F[ρn(x)] (6)

LR
n = exp{Rq [ρn(x)]} (7)

N [ρn] = exp{S[ρn(x)]} (8)

These three quantities together with the standard deviation will be referred as the
direct spreading measures of the density ρn(x) because they share the following prop-
erties: linear scaling under adequate boundary conditions, same units as the variable,
and vanishing when the density tends to delta density. Moreover, they have an associ-
ated uncertainty properties and fulfil the inequalities [19]

(δx)n ≤ (�x)n
N [ρn(x)] ≤ √

2πe(�x)n (9)

2 SUSY QM and construction of isospectral Hamiltonian

We note that a one dimensional SUSY Quantum mechanical model consists of a pair
of Hamiltonians H± of the form [5]

H±(x) = A± A∓ = − d2

dx2 + V± (10)

where

A± = ± d

dx
+ W (x)

V±(x) = W 2(x)± W ′(x) (11)

.
In this case the relation between the energies and the eigenstates of the Hamiltonian

H± are given by

E−
0 = 0, E−

n+1 = E+
n

ψ+
n (x) = 1

√

E−
n+1

A+ψ−
n+1(x), ψ

−
n+1(x) = 1

√

E+
n

A−ψ+
n (x) (12)
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We assume that the ground state belongs to the Hamiltonian H− and the correspond-
ing ground state is ψ−

0 (x) = C−
0 exp[− ∫

W (x)dx], where C−
0 is the normalization

constant.
To construct non trivial isospectral potentials let us now consider another superpo-

tential ̂W (x) such that

̂W 2(x)+ ̂W ′(x) = W 2(x)+ W ′(x) (13)

Clearly one solution of the above equation is ̂W (x) = W (x)while the other solution
is given by [21]

̂W (x) = W (x)+ e−2
∫

W (x)dx

λ + e−2
∫

W (x)dx
(14)

where λ is an integration constant which has to be so chosen that ̂W is non singular.
It may be noted that ̂V−(x) = ̂W 2(x)− ̂W ′(x) is a new potential which is isospectral
to V−(x). The normalized ground state wave function and the excited state wave
functions corresponding to the potential ̂V−(x, λ) are given by [5]

̂ψ−
0 (x, λ) =

√
λ(λ + 1)ψ−

0 (x)

λ + I(x) = √

ω(x)	0(x)

̂ψ−
n+1(x, λ) = ψ−

n+1(x)+ 1

E−
n+1

( I ′(x)
λ + I(x)

)(

d

dx
+ W (x)

)

ψ−
n+1(x)

= 1

λ + I(x)

[

(λ + I(x))ψ−
n+1(x)+ I ′(x)

E−
n+1

(

d

dx
+ W (x)

)

ψ−
n+1(x)

]

= √

ω(x)	n+1(x) (15)

where λ > 0 or λ < −1 and

I(x) =
x

∫

−∞
ψ−2

0 (t)dt

ω(x) = 1

(λ+ I (x))2

	0(x) = √

λ(λ + 1)ψ−
0 (x)

	n+1(x) = [λ + I(x)]ψ−
n+1(x)+ I ′(x)

E−
n+1

(

d

dx
+ W (x)

)

ψ−
n+1(x) (16)

It is not difficult to observe that the wave functions in (15) are given in terms of
the functions 	0(x) and 	n+1(x) which are in general not polynomials orthogonals
multiplied by a weight function. However, they are orthogonal with respect to the
weight function ω(x) i.e,
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∞
∫

−∞
	m(x)	n(x)ω(x)dx = δmn (17)

This relation actually follows from the standard orthonormality relation in quantum
mechanics

∞
∫

−∞
ψ∗

mψndx = δmn (18)

We would like to point out that when λ → ∞ the wave functions ̂ψ−
n (x, λ) →

ψ−
n (x) and the orthogonal functions 	n(x) reduces to some known orthogonal poly-

nomials depending on the superpotential W (x) and the weight function ω(x) reduces
to the corresponding weight function of the orthogonal polynomials. In the next sec-
tion we shall construct the isospectral partners of the linear harmonic oscillator and
the Rosen-Morse potential.

3 Examples

3.1 The linear Hermonic oscillator

The first example we shall consider is characterized by a superpotential W (x) = μx .
In this case V+(x) is given by

V+(x) = μ2x2 ± μ (19)

The above potentials are standard linear harmonic oscillator potential (shifted in
the energy scale). The energy eigenvalues and eigenfunctions of V+(x) are given by

E+
n = 2(n + 1)μ, n = 0, 1, 2, .....

ψ+
n (x) =

√ √
μ

2n(n)!√π e−μx2

2 Hn(
√
μx) (20)

while those of the partner potential V−(x) are given by

E−
n = 2nμ, n = 0, 1, 2, .....

ψ−
n (x) =

√ √
μ

2nn!√π e−μx2

2 Hn(
√
μx) (21)

where Hn denotes the Hermite polynomial [22].
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The eigenvalues and eigenfunction [9] for the isospectral Hamiltonian ̂V−(x) are
given by

̂E−
0 = 0

̂E−
n+1 = E−

n+1

̂ψ−
0 (x, μ, λ) =

√
λ(λ + 1)(μ

π
)

1
4 e−μx2

2

(

λ +
√

μ
π

∫ x
−∞ e−μt2 dt

)

̂ψ−
n+1(x, μ, λ) = ψ−

n+1(x)+ 1

E−
n+1

( I ′(x)
λ + I(x)

) (

d

dx
+ W (x)

)

ψ−
n+1(x)

= 1

λ + I(x)

⎛

⎝(λ + I(x)) ψ−
n+1(x)+ I ′(x)

√

E−
n+1

ψ−
n (x)

⎞

⎠

=
√ √

μ

2n+1(n + 1)!√π
e−μx2

2

(λ + I(x))

×
(

(λ + I(x)) Hn+1(
√
μx)+ I ′(x)√

μ
Hn(

√
μx)

)

(22)

where

I(x) =
√

μ

π

x
∫

−∞
e−μt2

dt (23)

Next, for the sake of simplicity we choose μ = 1. In this case

̂ψ−
0 (x, λ) =

√
λ(λ + 1)e− x2

2
√√

π (λ + 0.5 + 0.5Er f [x])

̂ψ−
1 (x, λ) =

√

1

2
√
π

e− x2
2

(λ + I(x))
(

(λ + I(x)) H1(x)+ I ′(x)H0(x)
)

=
√

1

2
√
π

e− x2
2

(λ + I(x))
(

(λ + I(x)) 2x + I ′(x)
)

=
√

1

2
√
π

e− x2
2

(λ + 0.5 + 0.5Er f [x])

×
(

(λ + 0.5 + 0.5Er f [x]) 2x + e−x2

√
π

)

̂ψ−
2 (x, λ)

̂ψ−
2 (x, λ) =

√

1

8
√
π

e− x2
2

(λ + I(x))
(

(λ + I(x)) H2(x)+ I ′(x)H1(x)
)
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=
√

1

8
√
π

e− x2
2

(λ + I(x))
(

(λ + I(x)) (4x2 − 2)+ I ′(x)2x
)

=
√

1

8
√
π

e− x2
2

(λ + 0.5 + 0.5Er f [x])

×
(

(λ + 0.5 + 0.5Er f [x]) (4x2 − 2)+ e−x2

√
π

2x

)

(24)

3.2 The symmetric Rosen-Morse potential

Let us consider a symmetric Rosen-Morse potential sometimes also called Poschl-
Teller potential which is characterized by the superpotential

W (x) = γ tanh x (25)

The corresponding partner potentials are

V±(x) = γ2 − γ(γ ∓ 1)sech2x (26)

The eigenvalue and the eigen functions for the potential V−(x) are

E−
n = γ2 − (γ − n)2, n = 0, 1, 2, .... < [γ ]

ψ−
n (x,γ) = N−

n (γ)sechγ−n x Pn (γ − n,γ − n, tanh x) (27)

where N−
n (γ) is the normalization constant and Pn (γ − n,γ − n, tanh x) is the nth

order Jacobi Polynomial [22]. The eigen values and the eigen functions [9] for the
partner potential V+(x) are

E+
n = E−

n+1

ψ+
n (x,γ) = 1

√

E−
n+1

(

d

dx
+ W (x)

)

ψ−
n+1(x,γ) = ψ−

n (x,γ − 1) (28)

The eigenvalues and the eigenfunctions for the isospectral potential ̂V−(x, λ) are

̂E−
0 = 0

̂ψ−
0 (x,γ, λ) =

√
λ(λ + 1)sechγx√

B(γ, 0.5)(λ + I(x))
̂ψ−

n+1(x,γ, λ) = ψ−
n+1(x,γ)+ 1

E−
n+1

( I ′(x)
λ + I(x)

) (

d

dx
+ γ tanh x

)

ψ−
n+1(x,γ)

= 1

λ + I(x)

⎛

⎝(λ + I(x)) ψ−
n+1(x,γ)+ I ′(x)

√

E−
n+1

ψ−
n (x,γ − 1)

⎞

⎠
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= sechγ−n−1(x)

λ + I(x) (λ + I(x)) Pn+1(γ − n − 1,γ − n − 1, tanh x)

+ I ′(x)
√

E−
n+1

Pn(γ − n − 1,γ − n − 1, tanh x) (29)

where

I(x) = 1

B(γ, 0.5)

x
∫

−∞
sech2γtdt (30)

For computation of the various lengths it is necessary choose γ. We choose γ = 4
so that there are three bound states. The energy and the corresponding wave functions
for these states can be found from (29) and are given by

̂ψ−
0 (x, λ) =

√
λ(λ + 1)sechγx√

B(γ, 0.5)(λ + I(x))
=

√
1120λ(λ + 1)sech4x

32λ + 16 + tanh x(16 + 8 sec h2x + 6 sec h4x + 5 sec h6x)

̂ψ−
1 (x, λ) = sech3(x)

λ + I(x)
(

(λ + I(x)) P1(3, 3, tanh x)+ I ′(x)√
7

P0(3, 3, tanh x)

)

= sech3(x)

λ + I(x)
(

(λ + I(x)) 4 tanh x + I ′(x)√
7

)

= sech3(x)

λ + I(x)
(

(λ + I(x)) 4 tanh x + 35sech8x

32
√

7

)

̂ψ−
2 (x, λ) = sech2(x)

λ + I(x)
(

(λ + I(x)) P2(2, 2, tanh x)+ I ′(x)√
12

P1(2, 2, tanh x)

)

= sech2(x)

λ + I(x)
(

(λ + I(x)) (7 tanh2 x − 1)+ I ′(x)√
12

3 tanh x

)

= sech2(x)

λ + I(x)
(

(λ + I(x)) (7 tanh2 x − 1)+ 35sech8x

32
√

12
3 tanh x

)

(31)

where

I(x) = 1

32

{

16 + tanh x
(

16 + 8 sec h2x + 6 sec h4x + 5 sec h6x
)}

(32)

4 Entropy length of the linear Harmonic oscillator and its isospectral partner

The position space Fisher length (̂δxH )
−
n (λ) for the state ̂ψ−

n (x, λ) in Eq. (22) is
calculated for n = 0, 1, 2 and it is a function of λ. In Fig. 1 we plot the Fisher lengths
(̂δxH )

−
n (λ) against λ for μ = 1 and n = 0, 1, 2. From Fig. 1 it is seen that the Fisher
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Fig. 1 Fisher lengths of the state ̂ψ−
n (x, μ, λ) in Eq. (24) in terms of λ for μ = 1

Fig. 2 Fisher lengths of the ground state ̂ψ−
0 (x, μ, λ) in Eq. (22) in terms of μ for λ = 0.0001 represent

DotDashed curve, λ = 0.1 represent Dashed curve and λ = 1,000 represent continuous curve

length increases as λ increases for n = 0 and decreases as λ increases for n = 1, 2.
Also one may note that for all values of λ the Fisher length is an increasing function
of the quantum number n.

We now compute the Fisher length (̂δxH )
−
0 (μ) of the ground state ̂ψ−

0 (x, μ, λ) as
a function of μ for different values of λ and the results are presented in Fig. 2. From
Fig. 2 we conclude that for a given λ the Fisher length (̂δxH )

−
0 (μ) decreases as μ

increases. Also we may say that the Fisher length (̂δxH )
−
0 (μ) increases and tends to

(δxH )
−
0 (μ) if λ increases to a large value. So we conclude that for the excited states

Fisher length for the orthogonal functions is less than the corresponding classical
orthogonal polynomial which in this case is the Hermite polynomials.

Similarly we calculate the Renyi lengths ̂L−R
Hn (λ) of the state ̂ψ−

n (x, λ) in Eq. (22)
for n = 0, 1, 2 and it is a function of (λ, q). In Fig. 3 we plot the Renyi length ̂L−R

Hn (λ)
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Fig. 3 Renyi lengths of the state ̂ψ−
n (x, μ, λ) in Eq. (24) in terms of λ for μ = 1

Fig. 4 Renyi lengths of the ground state ̂ψ−
0 (x, μ, λ) in Eq. (22) in terms of μ for λ = 0.01 represent

DotDashed curve, λ = 1 represent Dashed curve and λ = 1,000 represent continuous curve

as a function of λ for μ = 1, q = 0.5 and n = 0, 1, 2. From Fig. 3 we can say that as a
function of λ the Renyi length increases as λ increases for any values of the quantum
number n. Also it increases as the quantum number n increases for any value of λ.

In Fig. 4 we plot the Renyi-length of the ground state ̂ψ−
0 (x, μ, λ) as a function of

μ for q = 0.5 and different values of λ. From Fig. 4 the Renyi lengths ̂L−R
H0 (μ, λ) are

found to decrease as μ increases for large values of λ. Furthermore the Renyi-length
̂L−R

H0 (μ, λ) decreases and tends to the Renyi lengths L−R
H0 (μ) as λ becomes large

for q < 1 and the Renyi-length ̂L−R
H0 (μ, λ) tends to the Renyi lengths L−R

H0 (μ) if λ

increases and q > 1. So we conclude that the Renyi length of the orthogonal functions
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Fig. 5 Shannon lengths of the state ̂ψ−
n (x, μ, λ) in Eq. (24) in terms of λ for μ = 1

Fig. 6 Shannon lengths of the ground state ̂ψ−
0 (x, μ, λ) in Eq. (22) in terms ofμ for λ = 0.0001 represent

DotDashed curve, λ = 0.1 represent Dashed curve and λ = 1,000 represent continuous curve

are greater than or less than that of the corresponding orthogonal polynomial according
as q < 1 or q > 1.

The Shannon length ̂NH [ρn](λ) of the same state ̂ψ−
n (x, λ) in Eq. (22) is a function

of (λ). In Fig. 5 we plot the Shannon lengths ̂NH [ρn](λ) as a function of λ for μ = 1.
From Fig. 5 we infer that the Shannon length increases as λ increases for any values
of the quantum number n. Also it increases as the quantum number n increases for all
values of λ.

Next in Fig. 6 we plot the Shannon length of the ground state ̂ψ−
0 (x, μ, λ) as a

function of μ for different values of λ. From Fig. 6 we can say that the the Shannon
length ̂N−

H [ρ0](λ) decreases as μ increases for any fixed value of λ. The Shannon
length ̂N−

H [ρ0](λ) increases and approaches the Shannon lengths N−
H [ρ0](λ) as λ
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Fig. 7 Fisher lengths of the state ̂ψ−
n (x,γ, λ) in Eq. (31) in terms of λ for γ = 4

increases. So we conclude that the Shannon length of the orthogonal functions are less
than that of the corresponding polynomial.

5 Entropy length of the symmetric Rosen-Morse potential and the
corresponding isospectral partner potentials

The position space Fisher length (̂δxR)
−
n (λ) for the state ̂ψ−

n (x, λ) in Eq. (29) is
calculated for n = 0, 1, 2 and it is a function of λ. Now we plot the Fisher lengths
(̂δxR)

−
n (λ) as a function of λand γ = 4, n = 0, 1, 2 in Fig. 7. From Fig. 7 it is

seen that the Fisher length increases as λ increases for n = 0 and it decreases as λ

increases for n = 1, 2. Also it can be seen that for any fixed value of λ the Fisher
length increases with the quantum number n.

Next we plot the Fisher length (̂δxR)
−
0 (γ) of the ground state ̂ψ−

0 (x,γ, λ) as a
function of γ for different values of λ in Fig. 8. From Fig. 8 we conclude that the
Fisher length (̂δxR)

−
0 (γ) decreases as γ increases when λ is kept fixed. Also the

Fisher length (̂δxR)
−
0 (γ) increases to the Fisher length (̂δxR)

−
0 (γ) if λ incrreases. So

we conclude that Fisher length of the orthogonal functions are less than that of the
corresponding polynomial which in this case is the Jacobi polynomial.

Similarly we calculate the Renyi lengths ̂L−R
Rn (λ) of the state ̂ψ−

n (x, λ) in Eq. (29)
for n = 0, 1, 2 and it is a function of (λ, q). Now we plot the Renyi length ̂L−R

Rn (λ) as
a function of λ in Fig. 9 for γ = 4, q = 0.5 and n = 0, 1, 2. From Fig. 9 we can say
that the Renyi length increases as λ increases for any values of the quantum number
n. Also it is increases as the quantum number n increases for a fixed values of λ as
well as for any values of λ.

Also plot the Renyi-length of the ground state ̂ψ−
0 (x,γ, λ) as a function of γ for

q = 0.5 and different values of λ in Fig. 10. From Fig. 10 the Renyi lengths ̂L−R
R0 (λ)

decreases as γ increases for a large values of λ. The Renyi-length ̂L−R
R0 (μ, λ) increases
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Fig. 8 Fisher lengths of the ground state ̂ψ−
0 (x,γ, λ) in Eq. (29) in terms of γ for λ = 0.0001 represent

DotDashed curve, λ = 0.1 represent Dashed curve and λ = 1,000 represent continuous curve

Fig. 9 Renyi lengths of the state ̂ψ−
n (x,γ, λ) in Eq. (31) in terms of λ for γ = 4

and increased to the Renyi lengths L−R
R0 (μ) if λ increases and increased to a large

number for q = 0.5. So we conclude that Renyi length of the orthogonal functions
are less than that of the corresponding polynomial.

The Shannon length ̂NR[ρn](λ) of the same states ̂ψ−
n (x, λ) in Eq. (29) is a function

of (λ). Now we plot the Shannon lengths ̂NR[ρn](λ) as a function of λ in Fig. 11 for
γ = 4. From Fig. 11 we can say that the Shannon length slowly increases as λ increases
for any values of the quantum number n and it is also increases as the quantum number
n increases for a fixed values of λ as well as any values of λ.

Also plot the Shannon length of the ground state ̂ψ−
0 (x,γ, λ) as it is a function of

γ for different values of λ in Fig. 12. From Fig. 12 we can say that the the Shannon
length ̂N−

R [ρ0](λ) is decreases as γ increases for a fixed values of λ. The Shannon
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Fig. 10 Renyi lengths of the ground state ̂ψ−
0 (x,γ, λ) in Eq. (29) in terms of γ for λ = 0.00001 represent

DotDashed curve, λ = 0.001 represent Dashed curve and λ = 1,000 represent continuous curve

Fig. 11 Shannon lengths of the state ̂ψ−
n (x,γ, λ) in Eq. (31) in terms of λ for γ = 4

length ̂N−
R [ρ0](λ) increases and increased to the Shannon lengths N−

R [ρ0](λ) as λ

increases and increased to a large number. So we conclude that the Shannon length of
the orthogonal functions are less than that of the corresponding polynomial.

6 Observation

Here we summarize the findings of our computation.
For the Harmonic oscillator
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Fig. 12 Shannon lengths of the ground state ̂ψ−
0 (x,γ, λ) in Eq. (29) in terms of γ for λ = 0.001 represent

DotDashed curve, λ = 0.1 represent Dashed curve and λ = 1, 000 represent continuous curve

• Fisher lengths of the orthogonal functions are less than that of the corresponding
associated orthogonal polynomial for any quantum number n and for any value of
μ.

• Renyi lengths of the orthogonal functions are less than or greater than that of the
corresponding associated orthogonal polynomials according as q > 1 or q < 1
for any quantum number n and for any value of μ.

• Shannon lengths of the orthogonal functions are less than that of the corresponding
associated orthogonal polynomials for any quantum number n and for any values
of μ.

For the Rosen-Morse potential

• Fisher lengths of the orthogonal functions are less than that of the corresponding
associated orthogonal polynomials for any quantum number n and γ = 4.

• Renyi lengths of the orthogonal functions are less than that of the corresponding
associated orthogonal polynomials for any quantum number n; q = 0.5 and γ = 4.

• Shannon lengths of the orthogonal functions are less than that of the corresponding
associated orthogonal polynomials for any quantum number n and γ = 4.
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